LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION - ALLIED

SECOND SEMESTER - APRIL 2023

MT 2100 – MATHEMATICS FOR COMPUTER SCIENCE

PART – A

Date: 10-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM

Answer ALL the questions:

- 1. Give the formulae for subtangent and subnormal in cartesian form.
- 2. Find $\frac{dy}{dx}$ where y = 2x + 5.
- 3. Define saddle point.
- 4. If p and q are roots of the equation $2x^2 + 3x + 5 = 0$, then find p + q.
- 5. Frame the quadratic equation, one of whose roots is 1 + i.
- 6. Define a row matrix.
- 7. Give an example of a symmetric matrix.
- 8. Find the general solution of the equation $y = xp + p^2$.
- 9. Determine the product of the roots of the equation $x^3 6x^2 + 11x 6 = 0$.
- 10. Write the formula for trapezoidal rule.

PART – B

Answer any FIVE of the following:

- 11. Determine the eigen values of the matrix $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.
- 12. Diminish the roots of the equation $x^4 5x^3 + 7x^2 4x + 5 = 0$ by 2.
- 13. Determine the nature of the roots of the equation $3x^5 2x^3 4x + 2 = 0$.
- 14. Elaborately discuss the criteria for maxima and minima of a function.
- 15. Calculate the sum of the cubes of the roots of the equation $x^3 6x^2 + 11x 6 = 0$.
- 16. Find the radius of curvature of the curve $xy^2 = a^3 x^3$ at (a, 0).
- 17. Solve the equation $(D^2 + 2D + 1)y = e^{-x} + 3$.
- 18. Solve the equation $x^3 27x + 54 = 0$ using Cardon's method.

PART – C

Answer any TWO of the following:

19. a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

b) Separate sin(x + iy) into real and imaginary parts.

(10 + 10)

 $(2 \times 20 = 40)$

 $(10 \times 2 = 20)$

Max.: 100 Marks

 $(5 \times 8 = 40)$

20. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(20)
21. a) Solve the equation $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.	

- b) Solve the equation $(D^2 + 5D + 4)y = x^2 + 7x + 9.$ (10 + 10)
- 22. a) If $u = \tan^{-1}(\frac{x^3 + y^3}{x y})$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
 - b) Find by Newton-Raphson method, the real root of $x^3 2x 5 = 0$ correct to three decimal places. (10+10)

############